PICO Question
Among adults and children who are in cardiac arrest in any setting (P), does any specific rate for external chest compressions (I), compared with a compression rate of about 100/min (C), change survival with favorable neurologic outcome; survival to hospital discharge; bystander CPR rates; time to first shock; time to first compressions; CPR quality (O)?

Evidence Reviewers
Julie Considine; Nicolas Mpotos

Task Force Question Owner
russell.griffin@heart.org

Search Strategy
Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest.

Circulation 2005; 111(4): 428-34

Recent data highlight a vital link between well-performed cardiopulmonary resuscitation (CPR) and survival after cardiac arrest; however, the quality of CPR as actually performed by trained healthcare providers is largely unknown. We sought to measure in-hospital chest compression rates and to determine compliance with published international guidelines. We developed and validated a handheld recording device to measure chest compression rate as a surrogate for CPR quality. A prospective observational study of adult cardiac arrests was performed at 3 hospitals from April 2002 to October 2003. Resuscitations were witnessed by trained observers using a customized personal digital assistant programmed to store the exact time of each chest compression, allowing offline calculation of compression rates at serial time points. In 97 arrests, data from 813 minutes during which chest compressions were delivered were analyzed in 30-second time segments. In 36.9% of the total number of segments, compression rates were <80 compressions per minute (cpm), and 21.7% had rates <70 cpm. Higher chest compression rates were significantly correlated with initial return of spontaneous circulation (mean chest compression rates for initial survivors and nonsurvivors, 90+/−17 and 79+/−18 cpm, respectively; P=0.0033). In-hospital chest compression rates were below published resuscitation recommendations, and suboptimal compression rates in our study correlated with poor return of spontaneous circulation. CPR quality is likely a critical determinant of survival after cardiac arrest, suggesting the need for routine measurement, monitoring, and feedback systems during actual resuscitation.

Abella, Benjamin S; Alvarado, Jason P; Myklebust, Helge; Edelson, Dana P; Barry, Anne; O’Hearn, Nicholas; Vanden Hoek, Terry L; Becker, Lance B;

Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest.

JAMA 2005; 293(3): 305-10

The survival benefit of well-performed cardiopulmonary resuscitation (CPR) is well-documented, but little objective data exist regarding actual CPR quality during cardiac arrest. Recent studies have challenged the notion that CPR is uniformly performed according to established international guidelines. To measure multiple parameters of in-hospital CPR quality and to determine compliance with published American Heart Association and international guidelines. A prospective observational study of 67 patients who experienced in-hospital cardiac arrest at the University of Chicago Hospitals, Chicago, Ill, between December 11, 2002, and April 5, 2004. Using a monitor/defibrillator with novel additional sensing capabilities, the parameters of CPR quality including chest compression rate, compression depth, ventilation rate, and the fraction of arrest time without chest compressions (no-flow fraction) were recorded. Adherence to American Heart Association and international CPR guidelines.
Analysis of the first 5 minutes of each resuscitation by 30-second segments revealed that chest compression rates were less than 90/min in 28.1% of segments. Compression depth was too shallow (defined as <38 mm) for 37.4% of compressions. Ventilation rates were high, with 60.9% of segments containing a rate of more than 20/min. Additionally, the mean (SD) no-flow fraction was 0.24 (0.18). A 10-second pause each minute of arrest would yield a no-flow fraction of 0.17. A total of 27 patients (40.3%) achieved return of spontaneous circulation and 7 (10.4%) were discharged from the hospital. In this study of in-hospital cardiac arrest, the quality of multiple parameters of CPR was inconsistent and often did not meet published guideline recommendations, even when performed by well-trained hospital staff. The importance of high-quality CPR suggests the need for rescuer feedback and monitoring of CPR quality during resuscitation efforts.

Babbs, Charles F;
Relative effectiveness of interposed abdominal compression CPR: sensitivity analysis and recommended compression rates.

Interposed abdominal compression, IAC-CPR incorporates alternating chest and abdominal compressions to generate enhanced artificial circulation during cardiac arrest. The technique has been generally successful in improving blood flow and survival compared to standard CPR; however, some questions remain. To determine "why does IAC-CPR produce more apparent benefit in some subjects than in others?" and "what is the proper compression rate, given that there are actually two compressions (chest and abdomen) in each cycle?" Computer models provide a means to search for subtle effects in complex systems. The present study employs a validated 12-compartment mathematical model of the human circulation to explore the effects upon systemic perfusion pressure of changes in 35 different variables, including vascular resistances, vascular compliances, and rescuer technique. CPR with and without IAC was modeled. Computed results show that the effect of 100 mmHg abdominal compressions on systemic perfusion pressure is relatively constant (about 16 mmHg augmentation). However, the effect of chest compression depends strongly upon chest compression frequency and technique. When chest compression is less effective, as is often true in adults, the addition of IAC produces relatively dramatic augmentation (e.g. from 24 to 40 mmHg). When chest compression is more effective, the apparent augmentation with IAC is relatively less (e.g. from 60 to 76 mmHg). The optimal frequency for uninterrupted IAC-CPR is near 50 complete cycles/min with very little change in efficacy over 20-100 cycles/min. In theory, the modest increase in systemic perfusion pressure produced by IAC can make up in part for poor or ineffective chest compressions in CPR. IAC appears relatively less effective in circumstances when chest pump output is high.

Bjørshol, Conrad; Søreide, Eldar; Torsteinbø, Tor; Lexow, Kristian; Nilsen, Odd; Sunde, Kjetil;
Quality of chest compressions during 10min of single-rescuer basic life support with different compression: ventilation ratios in a manikin model.
Good quality basic life support (BLS) improves outcome during cardiac arrest. As fatigue may reduce BLS performance over time we wanted to examine the quality of chest compressions in a single-rescuer scenario during prolonged BLS with different compression:ventilation ratios (C:V ratios). Professional paramedics were asked to perform single-rescuer BLS with C:V ratios of 15:2, 30:2 and 50:2 for 10 min each in random order. A Laerdal Medical Resusci Anne Simulator with PC Skillreporting System was used for BLS quality analysis. Total number of chest compressions, compression depth and compression rate were measured and the differences between the C:V ratios were analysed with repeated measures ANOVA. For analysis of fatigue, chest compression variables for each 2-min period were analysed and compared with the first 2-min period using repeated measures ANOVA. Altogether 50 paramedics completed the study. The mean number of chest compressions increased significantly from 604 to 770 and 862 with C:V ratios of 15:2, 30:2 and 50:2, respectively. Chest compression rate was significantly higher with C:V ratio of 15:2 compared to 30:2 and 50:2 but was above 100 per minute for all three ratios. However, the mean chest compression depth did not change significantly between the different C:V ratios. The number of chest compressions did not change significantly with time for any of the three C:V ratios. Compression depth did decline after the first 2-min period for 30:2 and 50:2 as did compression rate for all three ratios. However all were above the guideline limits for the entire test period. Increasing the C:V ratio increases the number of chest compressions during 10 min of BLS. Compression depth and compression rate were within guideline recommendations for all three ratios. We found no decline in chest compression quality below guideline recommendations during 10 min of BLS with any of the three different C:V ratios.

Christenson, Jim; Andrusiek, Douglas; Everson-Stewart, Siobhan; Kudenchuk, Peter; Hostler, David; Powell, Judy; Callaway, Clifton; Bishop, Dan; Vaillancourt, Christian; Davis, Dan D; Aufderheide, Tom P TP; Idris, Ahamed A; Stiell, Ian I; Berg, Robert R; , ;

Quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The proportion of time in which chest compressions are performed in each minute of cardiopulmonary resuscitation is an important modifiable aspect of quality cardiopulmonary resuscitation. We sought to estimate the effect of an increasing proportion of time spent performing chest compressions during cardiac arrest on survival to hospital discharge in patients with out-of-hospital ventricular fibrillation or pulseless ventricular tachycardia. This is a prospective observational cohort study of adult patients from the Resuscitation Outcomes Consortium Cardiac Arrest Epistry with confirmed ventricular fibrillation or ventricular tachycardia, no defibrillation before emergency medical services arrival, electronically recorded cardiopulmonary resuscitation before the first shock, and a confirmed outcome. Patients were followed up to discharge from the hospital or death. Of the 506 cases, the mean age was 64 years, 80% were male, 71% were witnessed by a bystander, 51% received bystander cardiopulmonary resuscitation, 34% occurred in a public location, and 23% survived. After adjustment for age, gender, location, bystander cardiopulmonary resuscitation, bystander witness status, and response time, the odds ratios of surviving to hospital discharge in the 2 highest categories of chest compression fraction compared with the reference category were 3.01 (95% confidence interval 1.37 to 6.58) and 2.33 (95% confidence interval 0.96 to 5.63). The estimated adjusted linear effect on odds ratio of survival for a 10% change in chest compression fraction was 1.11 (95% confidence interval 1.01 to 1.21). An increased chest compression fraction is independently predictive of better survival in patients who experience a prehospital ventricular fibrillation/tachycardia cardiac arrest.
Dorph, E; Wik, L; Steen, P A;

Effectiveness of ventilation-compression ratios 1:5 and 2:15 in simulated single rescuer paediatric resuscitation.

Resuscitation 2002; 54(3): 259-64

Current guidelines for paediatric basic life support (BLS) recommend a ventilation-compression ratio of 1:5 during child resuscitation compared with 2:15 for adults, based on the consensus that ventilation is more important in paediatric than in adult BLS. We hypothesized that the ratio 2:15 would provide the same minute ventilation as 1:5 during single-rescuer paediatric BLS due to the reduced time required to change between ventilations and compressions. Fourteen lay rescuers were trained with both ratios and thereafter performed single rescuer BLS for approximately 4 min with each of the two ratios in random order on a child-sized manikin with a built-in respiratory monitor. Quality of chest compressions was assessed by measurement of the rate, depth and position. There were no significant differences in tidal volumes or minute ventilation between the ratios. Nearly all chest compressions were within acceptable limits for depth and place with both methods, but the mean number of chest compressions per minute was 48+/−15% greater with ratio 2:15. In conclusion, there was no difference in ventilation, but nearly one and a half times as many compressions with a ratio of 2:15 than 1:5 for lay rescuers during single rescuer paediatric CPR. In order to simplify CPR training for laypersons, we recommend a 2:15 ratio for both single- and two-person, adult and paediatric layperson BLS.

Harris, L C; Kirimli, B; Safar, P;

Ventilation-cardiac compression rates and ratios in cardiopulmonary resuscitation.

Anesthesiology; 28(5): 806-13

Idris, Ahamed H; Guffey, Danielle; Aufderheide, Tom P; Brown, Siobhan; Morrison, Laurie J; Nichols, Patrick; Powell, Judy; Daya, Mohamud; Bigham, Blair L; Atkins, Dianne L; Berg, Robert; Davis, Dan; Stiell, Ian; Sopko, George; Nichol, Graham; , ;

Relationship between chest compression rates and outcomes from cardiac arrest.
Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions per minute. Animal and human studies have reported that blood flow is greatest with chest compression rates near 120/min, but few have reported rates used during out-of-hospital (OOH) cardiopulmonary resuscitation or the relationship between rate and outcome. The purpose of this study was to describe chest compression rates used by emergency medical services providers to resuscitate patients with OOH cardiac arrest and to determine the relationship between chest compression rate and outcome. Included were patients aged ≥ 20 years with OOH cardiac arrest treated by emergency medical services providers participating in the Resuscitation Outcomes Consortium. Data were abstracted from monitor-defibrillator recordings during cardiopulmonary resuscitation. Multiple logistic regression analysis assessed the association between chest compression rate and outcome. From December 2005 to May 2007, 3098 patients with OOH cardiac arrest were included in this study. Mean age was 67 ± 16 years, and 8.6% survived to hospital discharge. Mean compression rate was 112 ± 19/min. A curvilinear association between chest compression rate and return of spontaneous circulation was found in cubic spline models after multivariable adjustment (P=0.012). Return of spontaneous circulation rates peaked at a compression rate of ≈ 125/min and then declined. Chest compression rate was not significantly associated with survival to hospital discharge in multivariable categorical or cubic spline models. Chest compression rate was associated with return of spontaneous circulation but not with survival to hospital discharge in OOH cardiac arrest.

Iyanaga, Masayuki; Gray, Randal; Stephens, Shannon W; Akinsanya, Olajide; Rodgers, Joel; Smyrski, Kathleen; Wang, Henry E;

Comparison of methods for the determination of cardiopulmonary resuscitation chest compression fraction.

Resuscitation 2012; 83(5): 568-71

While cardiopulmonary resuscitation (CPR) chest compression fraction (CCF) is associated with out-of-hospital cardiac arrest (OHCA) outcomes, there is no standard method for the determination of CCF. We compared nine methods for calculating CCF. We studied consecutive adult OHCA patients treated by Alabama Emergency Medical Services (EMS) agencies of the Resuscitation Outcomes Consortium (ROC) during January 1, 2010 to October 28, 2010. Paramedics used portable cardiac monitors with real-time chest compression detection technology (LifePak 12, Physio-Control, Redmond, WA). We performed both automated CCF calculation for the entire care episode as well as manual review of CPR data in 1-min epochs, defining CCF as the proportion of each treatment interval with active chest compressions. We compared the CCF values resulting from 9 calculation methods: (1) mean CCF for the entire patient care episode (automated calculation by manufacturer software), (2) mean CCF for first 3 min of patient care, (3) mean CCF for first 5 min, (4) mean CCF for first 10 min, (5) mean CCF for the entire episode except first 5 min, (6) mean CCF for last 5 min, (7) mean CCF from start to first shock, (8) mean CCF for the first half of resuscitation, and (9) mean CCF for the second half of resuscitation. We compared CCF for Methods 2-9 with Method 1 using paired t-tests with a Bonferroni-adjusted p-value of 0.006 (95% confidence intervals). Among 102 adult OHCA, patient demographics were: mean age 60.3 years (SD 20.8 years), African American 56.9%, male 63.7%, and shockable ECG rhythm 23.5%. Mean CPR duration was 728 s (95% CI: 647-809 s). Mean CCF for the 9 CCF calculation methods were: (1) 0.587%; (2) 0.526%; (3) 0.541%; (4) 0.566%; (5) 0.562%; (6) 0.597%; (7) 0.530%; (8) 0.550%; and (9) 0.590%. Compared with Method 1, Method 7 CCF (start to first shock) was slightly lower (-0.057; 99.5% CI: -0.100 to -0.014). There were no other statistically significant CCF differences (range: -0.054 to 0.013). Correlation between CCF 2-9 and CCF varied (p=0.48-0.85). CCF varies
Jones, Christopher M; Owen, Andrew; Thorne, Christopher J; Hulme, Jonathan;

Comparison of the quality of basic life support provided by rescuers trained using the 2005 or 2010 ERC guidelines.

Effective delivery of cardiopulmonary resuscitation (CPR) and prompt defibrillation following sudden cardiac arrest (SCA) is vital. Updated guidelines for adult basic life support (BLS) were published in 2010 by the European Resuscitation Council (ERC) in an effort to improve survival following SCA. There has been little assessment of the ability of rescuers to meet the standards outlined within these new guidelines. We conducted a retrospective analysis of the performance of first year healthcare students trained and assessed using either the new 2010 ERC guidelines or their 2005 predecessor, within the University of Birmingham, United Kingdom. All students were trained as lay rescuers during a standardised eight hour ERC-accredited adult BLS course. We analysed the examination records of 1091 students. Of these, 561 were trained and assessed using the old 2005 ERC guidelines and 530 using the new 2010 guidelines. A significantly greater proportion of candidates failed in the new guideline group (16.04% vs. 11.05%; p < 0.05), reflecting a significantly greater proportion of lay-rescuers performing chest compressions at too fast a rate when trained and assessed with the 2010 rather than 2005 guidelines (6.04% vs. 2.67%; p < 0.05). Error rates for other skills did not differ between guideline groups. The new ERC guidelines lead to a greater proportion of lay rescuers performing chest compressions at an erroneously fast rate and may therefore worsen BLS efficacy. Additional study is required in order to define the clinical impact of compressions performed to a greater depth and at too fast a rate.

Kern, K B; Sanders, A B; Raife, J; Milander, M M; Otto, C W; Ewy, G A;

A study of chest compression rates during cardiopulmonary resuscitation in humans. The importance of rate-directed chest compressions.

A prospective, cross-over trial was performed comparing two different rates of precordial compression using end-tidal carbon dioxide as an indicator of the efficacy of cardiopulmonary resuscitation in 23 adult patients. A second purpose of this study was to determine the effect of audio-prompted, rate-directed chest compressions on the end-tidal carbon dioxide concentrations during cardiopulmonary resuscitation. Patients with cardiac arrest received external chest compressions, initially in the usual fashion without rate direction and then with rhythmic audiotones for rate direction at either 80 compressions per minute or 120 compressions per minute. Nineteen of 23 patients had higher end-tidal carbon dioxide levels at the compression rate of 120 per minute. The mean end-tidal carbon dioxide level during compressions of 120 per minute was 15.0 +/- 1.8 mm Hg, slightly but
significantly higher than the mean level of 13.0 +/- 1.8 mm Hg at a compression rate of 80 per minute. However, end-tidal carbon dioxide levels increased rather dramatically when audiotones were used to guide the rate of chest compressions. Mean end-tidal carbon dioxide concentration was 8.7 +/- 1.2 mm Hg during standard cardiopulmonary resuscitation immediately before audio-prompted, rate-directed chest compression and increased to 14.0 +/- 1.3 mm Hg after the first 60 seconds of audible tones directing compressions. Using end-tidal carbon dioxide as an indicator of cardiopulmonary resuscitation efficacy, we conclude that audible rate guidance during chest compressions may improve cardiopulmonary resuscitation performance.

Kill, Clemens; Giesel, Matthias; Eberhart, Leopold; Geldner, Götz; Wulf, Hinnerk;

Differences in time to defibrillation and intubation between two different ventilation/compression ratios in simulated cardiac arrest.

Resuscitation 2005; 65(1): 45-8

During basic life support (BLS) by a two-rescuer-team early defibrillation and ALS procedures should be performed without interruptions of the BLS-ventilation/compression sequence. The objective of this study was to determine the impact of a ventilation/compression ratio of 5:50 versus 2:15 on the time intervals "Start BLS to first shock" and "Start BLS to intubation". Using a random cross over design 40 experienced paramedics performed a standard BLS/ALS-algorithm according to ILCOR guidelines in a manikin model with ventricular fibrillation (resusci skilreporter anne, Laerdal, Norway) performing both the 2:15 and the 5:50 ventilation/compression ratio. BLS was started with bag-valve/mask ventilation, a semi-automatic defibrillator (corpuls 08/16S) was connected with the manikin, ECG-analysis and three shocks were performed and the tracheal intubation was prepared. Ventilation/compression sequence was only interrupted during ECG-analysis and defibrillation. Expiratory volumes and number of compressions were measured. Variables were compared using paired Students t-test. In addition paramedics were interviewed about work-flow and emotional stress during the tests. The time interval "Start BLS to first shock" was 78 s (2:15-group) versus 63 s (5:50-group), p<0.0001, the time interval "Start BLS to intubation" was 183 s (2:15-group) versus 150 s (5:50-group), p<0.0001, mean ventilation volumes per minute were 4490 ml (2:15-group) versus 4370 ml (5:50-group), p>0.1, mean number of compressions were 65 min-1. (2:15-group) versus 68 min-1 (5:50-group), p>0.1. The work-flow and emotional stress was appraised by the paramedics to be significantly superior in the 5:50 ratio (p<0.0001). The ventilation/compression ratio of 5:50 compared with 2:15 during BLS with an unsecured airway reduces the time until the first defibrillation and tracheal intubation was performed without changes in ventilation volume and compressions per minute. The Paramedics stated that the 5:50 ratio improved the work-flow and reduced the emotional stress.

Ko, Patrick; Chen, Wen-Jone; Lin, Chih-Hao; Ma, Matthew; Lin, Fang-Yue;

Evaluating the quality of prehospital cardiopulmonary resuscitation by reviewing automated external defibrillator records and survival for out-of-hospital witnessed arrests.

Resuscitation 2005; 64(2): 163-9
Without an easy method to monitor the performance of prehospital cardiopulmonary resuscitation (CPR), earlier studies have not been able to assess the quality of CPR. In this study, we have used a new approach to evaluate prehospital CPR performance and the impact on outcome using data retrieved from the automatic external defibrillators (AED).

Electrocardiography (ECG) and voice records from AED data cards from 633 out-of-hospital cardiac arrests (OHCA) were reviewed. Fifty-two witnessed cardiac arrests in ventricular fibrillation (VF) requiring post-shock CPR underwent an independent, structured review by two physicians. The adequacy of prehospital CPR was defined on the basis of noticeable deflection of the ECG with chest compressions, the actual number of chest compressions delivered per minute, and the continuity of prehospital CPR at the scene and during transport. Outcome measures included return of spontaneous circulation (ROSC) and survival to hospital admission and discharge. The quality of prehospital CPR was judged as adequate in 15 (29%, 95%; CI: 18-42%) and inadequate in 37 (71%, 95%; CI: 58-82%) of the consensus. Adequate CPR performance resulted in a higher rate of ROSC at the scene (53% versus 8%, 95% CI of the difference 14-76%), and survival to hospital discharge (53% versus 8%, 95% CI of the difference 14-76%). Two reviewers agreed on whether CPR was adequate in 92.3% of cases, with a kappa of 0.82. The quality of prehospital CPR is associated with a greater likelihood of survival in witnessed VF arrests in need of post-shock CPR. The potential of widely available electrocardiography and voice records in AEDs in providing a convenient and real-time evaluation of prehospital CPR should be explored further.

PubMed ID 15680524
Observational Study
Read Abstract
Read Full Text
Article Source PubMed

Kramer-Johansen, Jo; Myklebust, Helge; Wik, Lars; Fellows, Bob; Svensson, Leif; Sørebo, Hallstein; Steen, Petter;
Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study.

Resuscitation 2006; 71(3): 283-92

To compare quality of CPR during out-of-hospital cardiac arrest with and without automated feedback. Consecutive adult, out-of-hospital cardiac arrests of all causes were studied. One hundred and seventy-six episodes (October 2002-October 2003) without feedback were compared to 108 episodes (October 2003-September 2004) where automatic feedback on CPR was given. Automated verbal and visual feedback was based on measured quality with a prototype defibrillator. Quality of CPR was the main outcome measure and survival was reported as specified in the protocol. Average compression depth increased from (mean +/- S.D.) 34 +/- 9 to 38 +/- 6 mm (mean difference (95% CI) 4 (2, 6), P < 0.001), and median percentage of compressions with adequate depth (38-51 mm) increased from 24% to 53% (P < 0.001, Mann-Whitney U-test) with feedback. Mean compression rate decreased from 121 +/- 18 to 109 +/- 12 min(-1) (difference -12 (-16, -9), P = 0.001). There were no changes in the mean number of ventilations per minute; 11 +/- 5 min(-1) versus 11 +/- 4 min(-1) (difference 0 (-1, 1), P = 0.8) or the fraction of time without chest compressions; 0.48 +/- 0.18 versus 0.45 +/- 0.17 (difference -0.03 (-0.08, 0.01), P = 0.08).

With intention to treat analysis 7/241 control patients were discharged alive (2.9%) versus 5/117 with feedback (4.3%) (OR 1.5 (95% CI; 0.8, 3), P = 0.2). In a logistic regression analysis of all cases, witnessed arrest (OR 4.2 (95% CI; 1.6, 11), P = 0.004) and average compression depth (per mm increase) (OR 1.05 (95% CI; 1.01, 1.09), P = 0.02) were associated with rate of hospital admission. Automatic feedback improved CPR quality in this prospective non-randomised study of out-of-hospital cardiac arrest. Increased compression depth was associated with increased short-term survival. ClinicalTrials.gov (NCT00138996), http://www.clinicaltrials.gov/.

PubMed ID 17070980
Read Abstract
Read Full Text
Article Source PubMed
Losert, Heidrun; Sterz, Fritz; Köhler, Klemens; Sodeck, Gottfried; Fleischhackl, Roman; Eisenburger, Philip; Kliegel, Andreas; Herkner, Harald; Myklebust, Helge; Nysaether, Jon; Laggner, Anton N;

Quality of cardiopulmonary resuscitation among highly trained staff in an emergency department setting.

Arch. Intern. Med. 2006; 166(21): 2375-80

Recent reports have highlighted the poor standard of cardiopulmonary resuscitation (CPR) achieved by health care professionals in diverse situations. We explored what can be achieved in an emergency department by highly trained permanent staff. In a prospective observational study conducted from June 1, 2002, to August 31, 2005, 80 of 213 patients requiring CPR and admitted to the emergency department of a tertiary care hospital were eligible for study participation. Owing to several logistic problems with CPR, 133 patients could not be studied. The CPR team consisted of emergency- and critical care-trained physicians with more than 10 years of acute care experience, most of whom were instructors of European Resuscitation Council courses in basic and advanced life support. A specially designed defibrillator was used to assess the quality of CPR. For 80 patients, 95 data sets were available for analysis, yielding a total of 1065 minutes of cardiac arrest time. Chest compressions were performed at a rate of 114 (95% confidence interval [CI], 112-116) per minute, resulting in a mean of 96 (95% CI, 93-99) delivered chest compressions per minute. We further observed a mean hands-off ratio of 12.7% (95% CI, 12.3%-13.1%), and the hands-off ratio was linearly associated with the duration of CPR (R(2) = 0.95; mean, 4.3% increments per 5-10 minutes; P<.001). Patients were hyperventilated with a median of 18 (interquartile range, 14-24) ventilations per minute. Highly trained professionals in an emergency department can achieve appropriate chest compression rates during CPR with a low hands-off ratio. Increased attention must be paid in all situations to the avoidance of hyperventilation.

Lyon, R; Clarke, S; Milligan, D; Clegg, G;

Resuscitation feedback and targeted education improves quality of pre-hospital resuscitation in Scotland.

Resuscitation 2012; 83(1): 70-5

Out-of-hospital cardiac arrest (OHCA) is a leading cause of mortality and serious neurological morbidity in Europe. Recent studies have demonstrated the adverse physiological consequences of poor resuscitation technique and have shown that quality of cardiopulmonary resuscitation (CPR) is a critical determinant of outcome from OHCA. Telemetry of the defibrillator transthoracic impedance (TTI) trace can objectively measure quality of pre-hospital resuscitation. This study aims to analyse the impact of targeted resuscitation feedback and training on quality of pre-hospital resuscitation. Prospective, single centre, cohort study over 13 months (1st December 2009-31st December 2010). Baseline pre-hospital resuscitation data was gathered over a 3-month period. Modems (n=40) were fitted to defibrillators on ambulance vehicles. Following a resuscitation attempt, the event was sent via telemetry and the TTI trace analysed. Outcome measures were time spent performing chest compressions, compression rate, the interval required to deliver a defibrillator shock and use of automatic or manual cardiac rhythm analysis. Targeted resuscitation classes were introduced and all ambulance crews received feedback following a resuscitation attempt. Pre-hospital resuscitation quality pre and post intervention were compared. 111 resuscitation traces were
analysed. Mean hands-on-chest time improved significantly following feedback and targeted resuscitation training (73.0% vs 79.3%, p=0.007). There was no significant change in compression rate during the study period. There was a significant reduction in median time-to-shock interval from 20.25s (IQR 15.50-25.50s) to 13.45 s (IQR 2.25-22.00 s) (p=0.006). Automatic rhythm recognition fell from 50% to 28.6% (p=0.03) following intervention. Telemetry and analysis of the TTI trace following OHCA allows objective evaluation of the quality of pre-hospital resuscitation. Targeted resuscitation training and ambulance feedback improves the quality of pre-hospital resuscitation. Further studies are required to establish possible survival benefit from this technique. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

Min, Mun; Yeom, Seok; Ryu, Ji; Kim, Yong; Park, Maeng; Han, Sang; Lee, Seong; Cho, Suck;

A 10-s rest improves chest compression quality during hands-only cardiopulmonary resuscitation: A prospective, randomized crossover study using a manikin model.

Resuscitation 2013; :

OBJECTIVES: This study was designed to assess changes in cardiopulmonary resuscitation (CPR) quality and rescuer fatigue when rescuers are provided with a break during continuous chest compression CPR (CCC-CPR). METHODS: The present prospective, randomized crossover study involved 63 emergency medical technician trainees. The subjects performed three different CCC-CPR methods on a manikin model. The first method was general CCC-CPR without a break (CCC), the second included a 10-s break after 200 chest compressions (10/200), and the third included a 10-s break after 100 chest compressions (10/100). All methods were performed for 10min. We counted the total number of compressions and those with appropriate depth every 1min during the 10min and measured mean compression depth from the start of chest compressions to 10min. RESULTS: The 10/100 method showed the deepest compression depth, followed by the 10/200 and CCC methods. The mean compression depth showed a significant difference after 5min had elapsed. The percentage of adequate compressions per min was calculated as the proportion of compressions with appropriate depth among total chest compressions. The percentage of adequate compressions declined over time for all methods. The 10/100 method showed the highest percentage of adequate compressions, followed by the 10/200 and CCC methods. CONCLUSION: When rescuers were provided a rest at a particular time during CCC-CPR, chest compression quality increased compared with CCC without rest. Therefore, we propose that a rescuer should be provided a rest during CCC-CPR, and specifically, we recommend a 10-s rest after 100 chest compressions.

Monsieurs, Koenraad; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain; Calle, Paul;

Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest.

Resuscitation 2012; 83(11): 1319-23
BACKGROUND AND GOAL OF STUDY: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with decreased depth. In patients undergoing prehospital cardiopulmonary resuscitation by health care professionals, chest compression rate and depth were recorded using an accelerometer (E-series monitor-defibrillator, Zoll, U.S.A.). Compression depth was compared for rates <80/min, 80-120/min and >120/min. A difference in compression depth ≥0.5 cm was considered clinically significant. Mixed models with repeated measurements of chest compression depth and rate (level 1) nested within patients (level 2) were used with compression rate as a continuous and as a categorical predictor of depth. Results are reported as means and standard error (SE). One hundred and thirty-three consecutive patients were analysed (213,409 compressions). Of all compressions 2% were <80/min, 62% between 80 and 120/min and 36% >120/min, 36% were <4 cm deep, 45% between 4 and 5 cm, 19% >5 cm. In 77 out of 133 (58%) patients a statistically significant lower depth was observed for rates >120/min compared to rates 80-120/min, in 40 out of 133 (30%) this difference was also clinically significant. The mixed models predicted that the deepest compression (4.5 cm) occurred at a rate of 86/min, with progressively lower compression depths at higher rates. Rates >145/min would result in a depth <4 cm. Predicted compression depth for rates 80-120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions >120/min (mean difference 0.4 cm, P<0.001). Age and sex of the patient had no additional effect on depth. This study showed an association between higher compression rates and lower compression depths. Avoiding excessive compression rates may lead to more compressions of sufficient depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Nishiyama, Chika; Iwami, Taku; Kawamura, Takashi; Ando, Masahiko; Yonemoto, Naohiro; Hiraide, Atsushi; Nonogi, Hiroshi;

Quality of chest compressions during continuous CPR; comparison between chest compression-only CPR and conventional CPR.

Resuscitation 2010; 81(9): 1152-5

This study aimed to compare the time-dependent deterioration of chest compressions between chest compression-only cardiopulmonary resuscitation (CPR) and conventional CPR. This study involved 106 and 107 participants randomly assigned to chest compression-only CPR training and conventional CPR training, respectively. Immediately after training, participants were asked to perform CPR for 2 min and the quality of their CPR skills were evaluated. The number of chest compressions in total and those with appropriate depth were counted every 20 s CPR period from the start of CPR. The primary outcome was the CPR quality index calculated as the proportion of chest compressions with appropriate depth among total chest compressions. The total number of chest compressions remained stable over time both in the chest compression-only and the conventional CPR groups. The CPR quality index, however, decreased from 86.6+/-25.0 to 58.2+/-36.9 in the chest compression-only CPR group from 0-20 s through 61-80 s. The reduction was greater than in the conventional CPR group (85.9+/-25.5 to 74.3+/-34.0). The difference in the CPR quality index reached statistical significance (P=0.003) at 61-80 s period. Chest compressions with appropriate depth decreased more rapidly during chest compression-only CPR than conventional CPR. We recommend that CPR providers change their roles every 1 min to maintain the quality of chest compressions during chest compression-only CPR. (UMIN-CTR C0000000321). Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Randomized Control Trial

Ødegaard, Silje; Olasveengen, Theresa; Steen, Petter Andreas; Kramer-Johansen, Jo;

Resuscitation 2009; 80(8): 843-8

Most manikin and clinical studies have found decreased quality of CPR during transport to hospital. We wanted to study quality of CPR before and during transport for out-of-hospital cardiac arrest patients and also whether quality of CPR before initiation of transport was different from the quality in patients only receiving CPR on scene. Quality of CPR was prospectively registered with a modified defibrillator for consecutive cases of out-of-hospital cardiac arrest in three ambulance services during 2002-2005. Ventilations were registered via changes in transthoracic impedance and chest compressions were measured with an extra chest compression pad placed on the patients' sternum. Paired t-tests were used to analyse quality of CPR before vs. during transport with ongoing CPR. Unpaired t-tests were used to compare CPR quality prior to transport to CPR quality in patients with CPR terminated on site. Quality of CPR did not deteriorate during transport, but as previously reported overall quality of CPR was substandard. Quality of CPR performed on site was significantly better when transport was not initiated with ongoing CPR compared to episodes with initiation of transport during CPR: fraction of time without chest compressions was 0.45 and 0.53 (p<0.001), compression depth 37 mm and 34 mm (p<0.04), and number of chest compressions per minute 61 and 56 (p=0.01), respectively. CPR quality was sub-standard both before and during transport. Early decision to transport might have negatively affected CPR quality from the early stages of resuscitation.

Olasveengen, Theresa M; Wik, Lars; Kramer-Johansen, Jo; Sunde, Kjetil; Pytte, Morten; Steen, Petter A;

Resuscitation 2007; 75(2): 260-6

To evaluate the quality of cardiopulmonary resuscitation (CPR) performed by a physician-manned ambulance, and assess whether it changed with time influenced by developing scientific evidence and guideline changes. A retrospective, observational study of all cardiac arrest patients (except trauma) older than 18 years treated between May 2003 and December 2006 by the physician-manned ambulance in Oslo. CPR quality was assessed from continuous electronic recordings from the defibrillators (LIFEPAK 12, Physio-Control or a modified Heartstart 4000, Philips Medical Systems). Ventilations were assessed from changes in transthoracic impedance, chest compressions from transthoracic impedance for LIFEPAK 12 and from an accelerometer for Heartstart 4000 (nine patients). Values are given as mean+/-S.D. and differences analysed with ANOVA and unpaired Student's t-test with Bonferroni correction. Forty-eight of 169 consecutive cases were excluded from CPR quality analysis, 47 due to missing defibrillator data and one due to a short arrest time (<1min). Hands-off intervals (fraction of time without spontaneous circulation where no chest compressions are given) were reduced from 0.18+/-0.11 in 2003 to 0.10+/-0.06 in 2006 (p=0.03). Compression and ventilation rates were significantly reduced from 122+/-12 and 16+/-3min(-1), respectively in 2003 to 111+/-10 and 12+/-3 in 2006 (p<0.0001 and p=0.001). In 2003-2004 10% were discharged alive versus 16% in 2005-2006 (p=0.3, Chi-square test). High quality CPR is achievable out-of-hospital, and the improvement with time could reflect
Ong, Marcus; Quah, Joy; Annathurai, Annitha; Noor, Noorkiah; Koh, Zhi; Tan, Kenneth; Pothiawala, Sohil; Poh, Ah; Loy, Chye; Fook-Chong, Stephanie S;

Improving the quality of cardiopulmonary resuscitation by training dedicated cardiac arrest teams incorporating a mechanical load-distributing device at the emergency department.

Resuscitation 2012; :

OBJECTIVE: Determine if implementing cardiac arrest teams trained with a 'pit-crew' protocol incorporating a load-distributing band mechanical CPR device (Autopulse™ ZOLL) improves the quality of CPR, as determined by no-flow ratio (NFR) in the first 10min of resuscitation. METHODS: A phased, prospective, non-randomized, before-after cohort evaluation. Data collection was from April 2008 to February 2011. There were 100 before and 148 after cases. Continuous video and chest compression data of all study subjects were analyzed. All non-traumatic, collapsed patients aged 18 years and above presenting to the emergency department were eligible. Primary outcome was NFR. Secondary outcomes were return of spontaneous circulation (ROSC), survival to hospital admission and neurological outcome at discharge. MAIN RESULTS: After implementation, mean total NFR for the first 5min decreased from 0.42 to 0.27 (decrease=0.15, 95% CI 0.10-0.19, p<0.005), and from 0.24 to 0.18 (decrease=0.06, 95% CI 0.01-0.11, p=0.02) for the next 5min. The mean time taken to apply Autopulse™ decreased from 208.8s to 141.6s (decrease=67.2s, 95% CI 22.3-112.1, p<0.005). The mean CPR ratio increased from 46.4% to 88.4% (increase=41.9%, 95% CI 36.9-46.9, p<0.005) and the mean total NFR for the first 10min decreased from 0.33 to 0.23 (decrease=0.10, 95% CI 0.07-0.14, p<0.005). CONCLUSION: Implementation of cardiac arrest teams was associated with a reduction in NFR in the first 10min of resuscitation. Training cardiac arrest teams in a 'pit-crew' protocol may improve the quality of CPR at the ED. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Sutton, Robert M; French, Benjamin; Nishisaki, Akira; Niles, Dana E; Maltese, Matthew R; Boyle, Lori; Stavland, Mette; Ellevstånn, Joar; Arbogast, Kristy B; Berg, Robert A; Nadkarni, Vinay M;

American Heart Association cardiopulmonary resuscitation quality targets are associated with improved arterial blood pressure during pediatric cardiac arrest.

Resuscitation 2013; 84(2): 168-72

To evaluate the association between cardiopulmonary resuscitation (CPR) quality and hemodynamic measurements during in-hospital pediatric cardiac arrest. We hypothesized that AHA recommended CPR rate and depth targets would be associated with systolic blood pressures≥80mmHg and diastolic blood pressures≥30mmHg. In children and adolescents <18 years of age who suffered a cardiac arrest with an invasive arterial catheter in place, a CPR monitoring defibrillator collected CPR data which was synchronized to arterial blood pressure (BP) tracings. Chest compression (CC) depths were corrected for mattress
deflection. Generalized least squares regression estimated the association between BP and CPR quality, treated as continuous variables. Mixed-effects logistic regression estimated the association between systolic BP ≥ 80 mmHg/diastolic BP ≥ 30 mmHg and the AHA targets of depth ≥ 38 mm and/or rate ≥ 100/min. Nine arrests resulted in 4156 CCs. The median mattress corrected depth was 32 mm (IQR 28-38); median rate was 111 CC/min (IQR 103-120). AHA depth was achieved in 1090/4156 (26.2%) CCs; rate in 3441 (83.7%). Systolic BP ≥ 80 mmHg was attained in 2516/4156 (60.5%) compressions; diastolic BP ≥ 30 mmHg in 2561/4156 (61.6%). A rate ≥ 100/min was associated with systolic BP ≥ 80 mmHg (OR 1.32; CI 1.04, 1.66; p = 0.02) and diastolic BP ≥ 30 mmHg (OR 2.15; CI 1.65, 2.80; p < 0.001). Exceeding both (rate ≥ 100/min and depth ≥ 38 mm) was associated with systolic BP ≥ 80 mmHg (OR 2.02; CI 1.45, 2.82; p = 0.001) and diastolic BP ≥ 30 mmHg (OR 1.48; CI 1.01, 2.15; p = 0.042). AHA quality targets (rate ≥ 100/min and depth ≥ 38 mm) were associated with systolic BPs ≥ 80 mmHg and diastolic BPs ≥ 30 mmHg during CPR in children. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Sutton, Robert M; Niles, Dana; Nysaether, Jon; Abella, Benjamin S; Arbogast, Kristy B; Nishisaki, Akira; Maltese, Matthew R; Donoghue, Aaron; Bishnoi, Ram; Helfaer, Mark A; Myklebust, Helge; Nadkarni, Vinay;

Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents.

Pediatrics 2009; 124(2): 494-9

Few data exist on pediatric cardiopulmonary resuscitation (CPR) quality. This study is the first to evaluate actual in-hospital pediatric CPR. We hypothesized that with bedside CPR training and corrective feedback, CPR quality can approach American Heart Association (AHA) targets. Using CPR recording/feedback defibrillators, quality of CPR was assessed for patients ≥ 8 years of age who suffered a cardiac arrest in the PICU or emergency department (ED). Before and during the study, a bedside CPR training program was initiated. Between October 2006 and February 2008, twenty events in 18 patients met inclusion criteria and resulted in 36749 evaluable chest compressions (CCs) during 392.3 minutes of arrest. CCs were shallow (< 38 mm or < 1.5 in) in 27.2% (9998 of 36749), with excessive residual leaning force (≥ 2500 g) in 23.4% (8611 of 36749). Segmental analysis of the first 5 minutes of the events demonstrated that shallow CCs and excessive residual leaning force were less prevalent during the first 5 minutes. AHA targets were not achieved for CC rate in 62 (43.1%) of 144 segments, CC depth in 52 (36.1%) of 144 segments, and residual leaning force in 53 (36.8%) of 144 segments. This prospective, observational study demonstrates feasibility of monitoring in-hospital pediatric CPR. Even with bedside CPR retraining and corrective audiovisual feedback, CPR quality frequently did not meet AHA targets. Importantly, no flow fraction target of 10% was achieved. Future studies should investigate novel educational methods and targeted feedback technologies.
Greater chest compression fraction (CCF, or proportion of CPR time spent providing compressions) is associated with better survival for out-of-hospital cardiac arrest (OOHCA) patients in ventricular fibrillation (VF). We evaluated the effect of CCF on return of spontaneous circulation (ROSC) in OOHCA patients with non-VF ECG rhythms in the Resuscitation Outcomes Consortium Epistry. This prospective cohort study included OOHCA patients if: not witnessed by EMS, no automated external defibrillator (AED) shock prior to EMS arrival, received >1 min of CPR with CPR process measures available, and initial non-VF rhythm. We reviewed the first 5 min of electronic CPR records following defibrillator application, measuring the proportion of compressions/min during the resuscitation. Demographics of 2103 adult patients from 10 U.S. and Canadian centers were: mean age 67.8; male 61.2%; public location 10.6%; bystander witnessed 32.9%; bystander CPR 35.4%; median interval from 911 to defibrillator turned on 8 min:27 s; initial rhythm asystole 64.0%, PEA 28.0%, other non-shockable 8.0%; median compression rate 110/min; median CCF 71%; ROSC 24.2%; survival to hospital discharge 2.0%. The estimated linear effect on adjusted odds ratio with 95% confidence interval (OR; 95%CI) of ROSC for each 10% increase in CCF was (1.05; 0.99, 1.12). Adjusted (OR; 95%CI) of ROSC for each CCF category were: 0-40% (reference group); 41-60% (1.14; 0.72, 1.81); 61-80% (1.42; 0.92, 2.20); and 81-100% (1.48; 0.94, 2.32). This is the first study to demonstrate that increased CCF among non-VF OOHCA patients is associated with a trend toward increased likelihood of ROSC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wik, Lars; Kramer-Johansen, Jo; Myklebust, Helge; Sørebø, Hallstein; Svensson, Leif; Fellows, Bob; Steen, Petter Andreas;

Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest.

JAMA 2005; 293(3): 299-304

Cardiopulmonary resuscitation (CPR) guidelines recommend target values for compressions, ventilations, and CPR-free intervals allowed for rhythm analysis and defibrillation. There is little information on adherence to these guidelines during advanced cardiac life support in the field. To measure the quality of out-of-hospital CPR performed by ambulance personnel, as measured by adherence to CPR guidelines. Case series of 176 adult patients with out-of-hospital cardiac arrest treated by paramedics and nurse anesthetists in Stockholm, Sweden, London, England, and Akershus, Norway, between March 2002 and October 2003. The defibrillators recorded chest compressions via a sternal pad fitted with an accelerometer and ventilations by changes in thoracic impedance between the defibrillator pads, in addition to standard event and electrocardiographic recordings. Adherence to international guidelines for CPR. Chest compressions were not given 48% (95% CI, 45%-51%) of the time without spontaneous circulation; this percentage was 38% (95% CI, 36%-41%) when subtracting the time necessary for electrocardiographic analysis and defibrillation. Combining these data with a mean compression rate of 121/min (95% CI, 118-124/min) when compressions were given resulted in a mean compression rate of 64/min (95% CI, 61-67/min). Mean compression depth was 34 mm (95% CI, 33-35 mm), 28% (95% CI, 24%-32%) of the compressions had a depth of 38 mm to 51 mm (guidelines recommendation), and the compression part of the duty cycle was 42% (95% CI, 41%-42%). A mean of 11 (95% CI, 11-12) ventilations were given per minute. Sixty-one patients (35%) had return of spontaneous circulation, and 5 of 6 patients discharged alive from the hospital had normal neurological outcomes. In this study of CPR during out-of-hospital cardiac arrest, chest compressions were not delivered half of the time, and most compressions were too shallow. Electrocardiographic analysis and defibrillation accounted for only small parts of intervals without chest compressions.

Excluded Articles

Question Chest compression rate

Aabakken, L; Enger, E;

[Cardiopulmonary resuscitation--should we or should we not? A question of law, ethics and quality assurance].

Tidsskr. Nor. Laegeforen. 1997; 117(29): 4205
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aase, Sven O; Myklebust, Helge;</td>
<td>Compression depth estimation for CPR quality assessment using DSP on accelerometer signals.</td>
<td>IEEE Trans Biomed Eng</td>
<td>2002</td>
<td>49(3): 263-8</td>
</tr>
<tr>
<td>Abella, Benjamin; Edelson, Dana; Kim, Salem; Retzer, Elizabeth; Myklebust, Helge; Barry, Anne; O'Hearn, Nicholas; Hoek, Terry; Becker, Lance;</td>
<td>CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system.</td>
<td>Resuscitation</td>
<td>2007</td>
<td>73(1): 54-61</td>
</tr>
<tr>
<td>Akhtar, Naheed; Field, Richard A; Greenwood, Liz; Davies, Robin P; Woolley, Sarah; Cooke, Matthew W; Perkins, Gavin D;</td>
<td>Quality of in-hospital cardiac arrest calls: a prospective observational study.</td>
<td>BMJ Qual Saf</td>
<td>2012</td>
<td>21(3): 184-90</td>
</tr>
<tr>
<td>Anantharaman, V;</td>
<td>Chest compression-only CPR or good quality 30:2 CPR.</td>
<td>Singapore Med J</td>
<td>2011</td>
<td>52(8): 576-81</td>
</tr>
<tr>
<td>Aramendi, E; Ayala, U; Irusta, U; Alonso, E; Eftestøl, T; Kramer-Johansen, J;</td>
<td>Suppression of the cardiopulmonary resuscitation artefacts using the instantaneous chest compression rate extracted from the thoracic impedance.</td>
<td>Resuscitation</td>
<td>2012</td>
<td>83(6): 692-8</td>
</tr>
</tbody>
</table>

PubMed IDs: 11876291, 17258853, 22198900, 21879215, 22198092
Arshid, Muhammad; Lo, Tsz-Yan Milly; Reynolds, Fiona;
Quality of cardio-pulmonary resuscitation (CPR) during paediatric resuscitation training: time to stop the blind leading the blind.
Resuscitation 2009; 80(5): 558-60
PubMed ID 19328616

Barcala-Furelos, Roberto; Abelairas-Gomez, Cristian; Romo-Perez, Vicente; Palacios-Aguilar, Jose;
Effect of physical fatigue on the quality CPR: a water rescue study of lifeguards: Physical fatigue and quality CPR in a water rescue.
PubMed ID 23085007

Baumrucker, Steven J; Stolick, Matt; Carter, Gregory T; Lasky, Tiffany M; Sheldon, Joanne E; Harrington, Dianne; Messerschmidt, William H; Oertli, Karrie A; Morris, Gerald M;
Death, dying, and statistics: quality measures versus quality of life.
Am J Hosp Palliat Care 2010; 27(7): 494-9
PubMed ID 20965943

Behringer, W; Sterz, F; Domanovits, H; Hohenberger, B; Schörkhuber, W; Frass, M; Losert, U; Laggner, A N;
Effects of manual high-impulse CPR on myocardial perfusion during cardiac arrest in pigs.
Resuscitation 1997; 34(3): 271-9
PubMed ID 9178389

Berden, H J; Willems, F F; Hendrick, J M; Knape, J T; Pijls, N H;
Variation in the quality of cardiopulmonary resuscitation.
Lancet 1992; 339(8800): 1019-20
Betz, Amy E; Menegazzi, James J; Logue, Eric S; Callaway, Clifton W; Wang, Henry E;
A randomized comparison of manual, mechanical and high-impulse chest compression in a porcine model of prolonged ventricular fibrillation.
Resuscitation 2006; 69(3): 495-501

Bjørshol, Conrad; Sunde, Kjetil; Myklebust, Helge; Assmus, Jörg; Søreide, Eldar;
Decay in chest compression quality due to fatigue is rare during prolonged advanced life support in a manikin model.

Bjørshol, Conrad Arnfinn; Myklebust, Helge; Nilsen, Kjetil Lønne; Hoff, Thomas; Bjørkli, Cato; Illguth, Eirik; Søreide, Eldar; Sunde, Kjetil;
Effect of socioemotional stress on the quality of cardiopulmonary resuscitation during advanced life support in a randomized manikin study.
Crit. Care Med. 2011; 39(2): 300-4

Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob;
Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.
Resuscitation 2011; 82(10): 1332-7

Bobrow, Bentley J; Vadeboncoeur, Tyler F; Stolz, Uwe; Silver, Annemarie E; Tobin, John M; Crawford, Scott A; Mason, Terence K; Schirmer, Jerome; Smith, Gary A; Spaite, Daniel W;
<table>
<thead>
<tr>
<th>Journal</th>
<th>Date</th>
<th>Vol</th>
<th>Pages</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuscitation</td>
<td>2011; 82(3)</td>
<td>PubMed ID 21146279</td>
<td>Read Abstract</td>
<td>The addition of voice prompts to audiovisual feedback and debriefing does not modify CPR quality or outcomes in out of hospital cardiac arrest--a prospective, randomized trial.</td>
</tr>
<tr>
<td>Acta Anaesthesiol Scand</td>
<td>2009; 53(1)</td>
<td>PubMed ID 19032569</td>
<td>Read Abstract</td>
<td>Can video mobile phones improve CPR quality when used for dispatcher assistance during simulated cardiac arrest?</td>
</tr>
<tr>
<td>Resuscitation</td>
<td>2009; 80(2)</td>
<td>PubMed ID 19111378</td>
<td>Read Abstract</td>
<td>The impact of therapeutic hypothermia on neurological function and quality of life after cardiac arrest.</td>
</tr>
<tr>
<td>Resuscitation</td>
<td>2008; 76(2)</td>
<td>PubMed ID 17804145</td>
<td>Read Abstract</td>
<td>Instructions to "put the phone down" do not improve the quality of bystander initiated dispatcher-assisted cardiopulmonary resuscitation.</td>
</tr>
</tbody>
</table>
Impact of age on long-term survival and quality of life following out-of-hospital cardiac arrest.

Crit. Care Med. 2004; 32(4): 963-7

Dietary fat quality and risk of sudden cardiac death in women.

The specific effect of metronome guidance on the quality of one-person cardiopulmonary resuscitation and rescuer fatigue.

J Emerg Med 2012; 43(6): 1049-54

A higher chest compression rate may be necessary for metronome-guided cardiopulmonary resuscitation.

Effect of vehicle speed on the quality of closed-chest compression during ambulance transport.

Resuscitation 2010; 81(7): 841-7
Colwell, Christopher; Mehler, Philip; Harper, Justin; Cassell, Lisa; Vazquez, John; Sabel, Allison;
Measuring quality in the prehospital care of chest pain patients.
Prehosp Emerg Care; 13(2): 237-40
PubMed ID 19291563

Costa, Roberto; Silva, Kátia Regina da; Mendonça, Rodrigo Castro; Nishioka, Silvana Angelina D’Orio; Siqueira, Sérgio de Freitas; Tamaki, Wagner Tetsuji; Crevelari, Elizabeth Sartori; Moreira, Luiz Felipe Pinho; Filho, Martino Martinelli;
Incidence of shock and quality of life in young patients with implantable cardioverter-defibrillator.
Arq. Bras. Cardiol. 2007; 88(3): 258-64
PubMed ID 17533465

De Vos, R; de Haes, H C; Koster, R W; de Haan, R J;
Quality of survival after cardiopulmonary resuscitation.
Arch. Intern. Med. 1999; 159(3): 249-54
PubMed ID 9989536

De Vos, R;
Quality of life after cardiopulmonary resuscitation.
Resuscitation 1997; 35(3): 231-6
PubMed ID 10203401

Deakin, Charles; Cheung, Spencer; Petley, Graham; Clewlow, Frank;
Assessment of the quality of cardiopulmonary resuscitation following modification of a standard telephone-directed protocol.
Resuscitation 2007; 72(3): 436-43
Dean, J M; Koehler, R C; Schleien, C L; Berkowitz, I; Michael, J R; Atchison, D; Rogers, M C; Traystman, R J;

Age-related effects of compression rate and duration in cardiopulmonary resuscitation.

J. Appl. Physiol. 1990; 68(2): 554-60

Deasy, Conor; Bray, Janet; Smith, Karen; Harriss, Linton; Bernard, Stephen; Cameron, Peter; , ;

Emerg Med J 2012; :

Deschilder, Koen; De Vos, Rien; Stockman, Willem;

The effect on quality of chest compressions and exhaustion of a compression--ventilation ratio of 30:2 versus 15:2 during cardiopulmonary resuscitation--a randomised trial.

Resuscitation 2007; 74(1): 113-8

Didwania, Aashish; McGaghie, William C; Cohen, Elaine R; Butter, John; Barsuk, Jeffrey H; Wade, Leonard D; Chester, Rozanna; Wayne, Diane B;

Progress toward improving the quality of cardiac arrest medical team responses at an academic teaching hospital.

J Grad Med Educ 2011; 3(2): 211-6

Dimopoulou, I; Anthi, A; Michalis, A; Tzelepis, G E;

Functional status and quality of life in long-term survivors of cardiac arrest after cardiac surgery.

Crit. Care Med. 2001; 29(7): 1408-11
Dine, C; Gersh, Ronna; Leary, Marion; Riegel, Barbara; Bellini, Lisa; Abella, Benjamin;
Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing.

Crit. Care Med. 2008; 36(10): 2817-22

Dorph, E; Wik, L; Strømme, T A; Eriksen, M; Steen, P A;
Oxygen delivery and return of spontaneous circulation with ventilation:compression ratio 2:30 versus chest compressions only CPR in pigs.

Resuscitation 2004; 60(3): 309-18

Dorph, E; Wik, L; Strømme, T A; Eriksen, M; Steen, P A;
Quality of CPR with three different ventilation:compression ratios.

Resuscitation 2003; 58(2): 193-201

Eapen, Zubin J; Peterson, Eric D; Fonarow, Gregg C; Sanders, Gillian D; Yancy, Clyde W; Sears, Samuel F; Carlson, Mark D; Curtis, Anne B; Hall, Laura Lee; Hayes, David L; Hernandez, Adrian F; Mirro, Michael; Prystowsky, Eric; Russo, Andrea M; Thomas, Kevin L; Al-Khatib, Sana M;
Quality of care for sudden cardiac arrest: Proposed steps to improve the translation of evidence into practice.

Am. Heart J. 2011; 162(2): 222-31

Earnest, M P; Breckinridge, J C; Yarnell, P R; Oliva, P B;

Eftestøl, Trygve; Thorsen, Kari Anne Haaland; Tøssebro, Erlend; Rong, Chunming; Steen, Petter Andreas;

Resuscitation 2009; 80(3): 311-7

Representing resuscitation data—Considerations on efficient analysis of quality of cardiopulmonary resuscitation.

Elizabeth Wilcox, M; Herridge, Margaret S;

Clinical year in review III: mechanical ventilation, acute respiratory distress syndrome, nonpulmonary intensive care unit, and quality performance assessment metrics in your practice.

Elliott, Vanessa J; Rodgers, David L; Brett, Stephen J;

Systematic review of quality of life and other patient-centred outcomes after cardiac arrest survival.

Resuscitation 2011; 82(3): 247-56

Farin, Erik; Meder, Milena;

Personality and the physician-patient relationship as predictors of quality of life of cardiac patients after rehabilitation.

Health Qual Life Outcomes 2010; 8: 100

Feneley, M P; Maier, G W; Kern, K B; Gaynor, J W; Gall, S A; Sanders, A B; Raessler, K; Muhlbaier, L H; Rankin, J S; Ewy, G A;
Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs.

Circulation 1988; 77(1): 240-50

PubMed ID 3335070 Read Abstract Read Full Text Article Source PubMed

Fischer, Henrik; Neuhold, Stephanie; Hochbrugger, Eva; Steinlechner, Barbara; Koinig, Herbert; Milosevic, Ljubisa; Havel, Christof; Frantal, Sophie; Greif, Robert;

Quality of resuscitation: flight attendants in an airplane simulator use a new mechanical resuscitation device--a randomized simulation study.

Resuscitation 2011; 82(4): 459-63

PubMed ID 21257251 Read Abstract Read Full Text Article Source PubMed

Fitzgerald, K R; Babbs, C F; Frissora, H A; Davis, R W; Silver, D I;

Cardiac output during cardiopulmonary resuscitation at various compression rates and durations.

Am. J. Physiol. 1981; 241(3): H442-8

PubMed ID 7282953 Read Abstract Read Full Text Article Source PubMed

Flores-Ramírez, Ramiro; Uribe-Longoria, Artemio; Rangel-Fuentes, María M; Gutiérrez-Fajardo, Pedro; Salazar-Riojas, Rosario; Cervantes-García, Daniel; Treviño-Ortíz, José H; Benavides-Chereti, Genoveva J; Espinosa-Oliveros, Luciana P; Limón-Rodríguez, Ramón H; Monreal-Puente, Rogelio; González-Treviño, Juan L; Rojas-Martínez, Augusto;

Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency.

Cardiovasc Revasc Med ; 11(2): 72-8

PubMed ID 20347795 Read Abstract Read Full Text Article Source PubMed

Gada, Hemal; Scuffham, Paul A; Griffin, Brian; Marwick, Thomas H;

Quality-of-life implications of immediate surgery and watchful waiting in asymptomatic aortic stenosis: a decision-analytic model.
Gallagher, R D; McKinley, S; Mangan, B; Pelletier, D; Squire, J; Mitten-Lewis, S;
The impact of the implantable cardioverter defibrillator on quality of life.

Gottschalk, André; Burmeister, Marc-A; Freitag, Marc; Cavus, Erol; Standl, Thomas;
Influence of early defibrillation on the survival rate and quality of life after CPR in prehospital emergency medical service in a German metropolitan area.

Graf, Jürgen; Mühlhoff, Cecile; Doig, Gordon S; Reinartz, Sebastian; Bode, Kirsten; Dujardin, Robert; Koch, Karl-Christian; Roeb, Elke; Janssens, Uwe;
Health care costs, long-term survival, and quality of life following intensive care unit admission after cardiac arrest.

Crit Care 2008; 12(4): R92

Granja, Cristina; Cabral, Glória; Pinto, Armando Teixeira; Costa-Pereira, Altamiro;
Quality of life 6-months after cardiac arrest.

Resuscitation 2002; 55(1): 37-44

Gräsner, J T; Herlitz, J; Koster, R W; Rosell-Ortiz, F; Stamatakis, L; Bossaert, L;
Quality management in resuscitation--towards a European cardiac arrest registry (EuReCa).
Greif, Robert; Stumpf, Dominik; Neuhold, Stephanie; Rützler, Kurt; Theiler, Lorenz; Hochbrugger, Eva; Haider, Dominik; Rinösl, Harald; Fischer, Henrik;

Effective compression ratio-A new measurement of the quality of thorax compression during CPR.

Greingor, J L;

Quality of cardiac massage with ratio compression-ventilation 5/1 and 15/2.

Groeneveld, Peter W; Matta, Mary A; Suh, Janice J; Yang, Feifei; Shea, Judy A;

Quality of life among implantable cardioverter-defibrillator recipients in the primary prevention therapeutic era.

Grudzen, Corita R; Liddicoat, Rebecca; Hoffman, Jerome R; Koenig, William; Lorenz, Karl A; Asch, Steven M;

Developing quality indicators for the appropriateness of resuscitation in prehospital atraumatic cardiac arrest.

Grzeskowiak, Malgorzata; Plotek, Wlodzimierz; Podlewski, Roland;

The quality of defibrillation performance among students of the University of Medical Sciences.
Gundersen, Kenneth; Nysaether, Jon; Kvaløy, Jan; Kramer-Johansen, Jo; Eftestøl, Trygve;
Chest compression quality variables influencing the temporal development of ROSC-predictors calculated from the ECG during VF.

Resuscitation 2009; 80(2): 177-82
Habibović, Mirela; van den Broek, Krista C; Theuns, Dominic A M J; Jordaens, Luc; Alings, Marco; van der Voort, Pepijn H; Pedersen, Susanne S;
Gender disparities in anxiety and quality of life in patients with an implantable cardioverter-defibrillator.

Europace 2011; 13(12): 1723-30
Hallas, Claire N; Burke, Julie L; White, David G; Connelly, Derek T;
Pre-ICD illness beliefs affect postimplant perceptions of control and patient quality of life.

Pacing Clin Electrophysiol 2010; 33(3): 256-65
Hamrick, Justin T; Fisher, Brock; Quinto, Kenneth B; Foley, Jennifer;
Quality of external closed-chest compressions in a tertiary pediatric setting: missing the mark.

Resuscitation 2010; 81(6): 718-23
Hanf, W; Codas, R; Meas-Yedid, V; Berthiller, J; Buron, F; Chauvet, C; Brunet, M; Giroud, A; McGregor, B C; Olivomarin, J C; Hadj-Aissa, A; Faure, A; Petruzzo, P; Martin, X; Badet, L; Morelon, E;
Kidney graft outcome and quality (after transplantation) from uncontrolled deceased donors after cardiac arrest.

Hansen, Dominique; Vranckx, Pascal; Broekmans, Tom; Eijnde, Bert; Beckers, Walter; Vandekerckhove, Philippe; Broos, Paul; Dendale, Paul;

Physical fitness affects the quality of single operator cardiocerebral resuscitation in healthcare professionals.

Haque, Ikram; Udassi, Jai; Udassi, Sharda; Theriaque, Douglas; Shuster, Jonathan; Zaritsky, Arno;

Chest compression quality and rescuer fatigue with increased compression to ventilation ratio during single rescuer pediatric CPR.

Resuscitation 2008; 79(1): 82-9

Harve, Heini; Jokela, Jorma; Tissari, Antti; Saukko, Ari; Okkolin, Toni; Pettilä, Ville; Silfvast, Tom;

Defibrillation and the quality of layperson cardiopulmonary resuscitation-dispatcher assistance or training?

Resuscitation 2009; 80(2): 275-7

Harve, H; Tiainen, M; Poutiainen, E; Maunu, M; Kajaste, S; Roine, R O; Silfvast, T;

Havel, Christof; Schreiber, Wolfgang; Trimmel, Helmut; Malzer, Reinhard; Haugk, Moritz; Richling, Nina; Riedmüller,
Eva; Sterz, Fritz; Herkner, Harald;
Quality of closed chest compression on a manikin in ambulance vehicles and flying helicopters with a real time automated feedback.
Resuscitation 2010; 81(1): 59-64

Havel, Christof; Schreiber, Wolfgang; Riedmuller, Eva; Haugk, Moritz; Richling, Nina; Trimmel, Helmut; Malzer, Reinhard; Sterz, Fritz; Herkner, Harald;
Quality of closed chest compression in ambulance vehicles, flying helicopters and at the scene.
Resuscitation 2007; 73(2): 264-70

Helm, M; Hauke, J; Schlafer, O; Schlechtriemen, T; Lampl, L;
[Extended medical quality management exemplified by the tracer diagnosis multiple trauma. Pilot study in the air rescue service].
Anaesthesist 2012; 61(2): 106-7, 110-5

Henik, R A; Wingfield, W E; Angleton, G M; Porter, R E;
Effects of body position and ventilation/compression ratios during cardiopulmonary resuscitation in cats.

Herlitz, Hohan; Svensson, Leif; Aune, Solveig; Lindqvist, Jonny; Svensson, Christer J;
[National quality registry for in-hospital cardiac arrest now started].
Lakartidningen ; 104(45): 3361-4
Hightower, D; Thomas, S H; Stone, C K; Dunn, K; March, J A;
Decay in quality of closed-chest compressions over time.

Hodde, Naomi M; Engelberg, Ruth A; Treece, Patsy D; Steinberg, Kenneth P; Curtis, J Randall;
Factors associated with nurse assessment of the quality of dying and death in the intensive care unit.
Crit. Care Med. 2004; 32(8): 1648-53

Horn, William;
In-office cardiac arrest. A systematic approach to quality care.
Adv Nurse Pract 2005; 13(12): 38-40

Hostler, David; Wang, Henry; Parrish, Kevin; Platt, Thomas E; Guimond, Guy;
The effect of a voice assist manikin (VAM) system on CPR quality among prehospital providers.
Prehosp Emerg Care ; 9(1): 53-60

Hsu, J W; Madsen, C D; Callaham, M L;
Quality-of-life and formal functional testing of survivors of out-of-hospital cardiac arrest correlates poorly with traditional neurologic outcome scales.
Ilper, Hendrik; Kunz, Tina; Pfleger, Holger; Schalk, Richard; Byhahn, Christian; Ackermann, Hanns; Breitkreutz, Raoul;

Comparative quality analysis of hands-off time in simulated basic and advanced life support following European Resuscitation Council 2000 and 2005 guidelines.

Iserbyt, P; Elen, J; Behets, D;

The effect of self-assessment in reciprocal learning with task cards on the quality of CPR.

Acta Anaesthesiol Belg 2009; 60(4): 239-45

Jäntti, H; Silfvast, T; Turpeinen, A; Kiviniemi, V; Uusaro, A;

Influence of chest compression rate guidance on the quality of cardiopulmonary resuscitation performed on manikins.

Resuscitation 2009; 80(4): 453-7

Jäntti, H; Silfvast, T; Turpeinen, A; Kiviniemi, V; Uusaro, A;

Quality of cardiopulmonary resuscitation on manikins: on the floor and in the bed.

Acta Anaesthesiol Scand 2009; 53(9): 1131-7

Jäntti, H; Kuisma, M; Uusaro, A;

The effects of changes to the ERC resuscitation guidelines on no flow time and cardiopulmonary resuscitation quality: a randomised controlled study on manikins.

Resuscitation 2007; 75(2): 338-44
Jensen, Jan; Walker, Mark; Leroux, Yves; Carter, Alix;
Chest Compression Fraction in Simulated Cardiac Arrest Management by Primary Care Paramedics: King Laryngeal Tube Airway versus Basic Airway Management.

Prehosp Emerg Care 2013; : Read Abstract Read Full Text Article Source PubMed

Kaeppler, G; Daubländer, M; Hinkelbein, R; Lipp, M;
[Quality of cardiopulmonary resuscitation by dentists in dental emergency care].

Mund Kiefer Gesichtschir 1998; 2(2): 71-7 Read Abstract Read Full Text Article Source PubMed

Kämäräinen, Antti; Sainio, Marko; Olkkola, Klaus T; Huhtala, Heini; Tenhunen, Jyrki; Hoppu, Sanna;
Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest.

Resuscitation 2012; 83(1): 138-42 Read Abstract Read Full Text Article Source PubMed

Kamphuis, H C M; De Leeuw, J R J; Derksen, R; Hauer, R; Winnubst, J A M;
A 12-month quality of life assessment of cardiac arrest survivors treated with or without an implantable cardioverter defibrillator.

Khan, Akbar H; Bunch, T Jared; White, Roger D; Packer, Douglas L;

Am. J. Cardiol. 2004; 93(8): 1027-30
Kim, Seunghwan; You, Je Sung; Lee, Hye Sun; Lee, Jae Ho; Park, Yoo Seok; Chung, Sung Phil; Park, Incheol;
Quality of chest compressions performed by inexperienced rescuers in simulated cardiac arrest associated with pregnancy.
Resuscitation 2013; 84(1): 98-102

Kramer-Johansen, Jo; Edelson, Dana P; Losert, Heidrun; Köhler, Klemens; Abella, Benjamin S;
Uniform reporting of measured quality of cardiopulmonary resuscitation (CPR).
Resuscitation 2007; 74(3): 406-17

Kramer-Johansen, Jo; Wik, Lars; Steen, Petter;
Advanced cardiac life support before and after tracheal intubation--direct measurements of quality.
Resuscitation 2006; 68(1): 61-9

Krarup, Niels; Terkelsen, Christian; Johnsen, Søren; Clemmensen, Peter; Olivecrona, Göran; Hansen, Troels; Trautner, Sven; Lassen, Jens;
Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest is hampered by interruptions in chest compressions--a nationwide prospective feasibility study.
Resuscitation 2011; 82(3): 263-9

Ladwig, K-H; Ronel, J; Baumert, J; Kolb, C;
[Psychological comorbidity and quality of life in patients with an implantable cardioverter/defibrillator (ICD)].
Lee, Ji; Jeon, Woo; Ahn, Jung; Cho, Yoon; Jung, Yoon; Kim, Gi;
The effect of a cellular-phone video demonstration to improve the quality of dispatcher-assisted chest compression-only cardiopulmonary resuscitation as compared with audio coaching.

Resuscitation 2011; 82(1): 64-8

Lei, Zhan; Qing, He; Min, Yang;
The effect of two different counting methods on the quality of CPR on a manikin--a randomized controlled trial.

Resuscitation 2009; 80(6): 685-8

Leong, B S H; Chua, G S W;
Quality of resuscitation in hospitals.

Levy, Michael;
Improved CPR. Increase effectiveness through quality improvement tools.

JEMS 2009; Suppl: suppl 18-21

Lewinsohn, A; Sherren, P B; Wijayatilake, D S;
The effects of bed height and time on the quality of chest compressions delivered during cardiopulmonary resuscitation: a randomised crossover simulation study.
Lin, Lian-Yu; Lo, Men-Tzung; Chiang, Wen-Chu; Lin, Chen; Ko, Patrick; Hsiung, Kuang-Hua; Lin, Jiunn-Lee; Chen, Wen-Jone; Ma, Matthew;

A new way to analyze resuscitation quality by reviewing automatic external defibrillator data.

Resuscitation 2012; 83(2): 171-6

Lipman, Steven S; Wong, Jocelyn Y; Arafeh, Julie; Cohen, Sheila E; Carvalho, Brendan;

Transport decreases the quality of cardiopulmonary resuscitation during simulated maternal cardiac arrest.

Luiz, T; Kumpch, M; Metzger, M; Madler, C;

[Management of cardiac arrest in a German soccer stadium. Structural, process and outcome quality].

Anaesthesist 2005; 54(9): 914-22

Lukas, R; Van Aken, H; Engel, P; Bohn, A;

[Real-time feedback systems for improvement of resuscitation quality].

Anaesthesist 2011; 60(7): 653-60

Lukas, R; Sengelhoff, C; Döpker, S; Harding, U; Mertens, P; Osada, N; Van Aken, H; Weber, T; Bohn, A;

[Chest compression quality : Can feedback technology help?].
The first year after successful cardiac resuscitation: function, activity, participation and quality of life.

Improving outcome after out-of-hospital cardiac arrest by strengthening weak links of the local Chain of Survival; quality of advanced life support and post-resuscitation care.

Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions: a randomized manikin study investigating performance with and without feedback.

Resuscitation quality assurance for out-of-hospital cardiac arrest--setting-up an ambulance defibrillator telemetry network.

Maier, G W; Newton, J R; Wolfe, J A; Tyson, G S; Olsen, C O; Glower, D D; Spratt, J A; Davis, J W; Feneley, M P;
Rankin, J S;
The influence of manual chest compression rate on hemodynamic support during cardiac arrest: high-impulse cardiopulmonary resuscitation.

Maier, G W; Tyson, G S; Olsen, C O; Kernstein, K H; Davis, J W; Conn, E H; Sabiston, D C; Rankin, J S;
The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation.

Maier, G W; Tyson, G S; Olsen, C O; Kernstein, K H; Davis, J W; Conn, E H; Sabiston, D C; Rankin, J S;
The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation.

Mark, Daniel; Anstrom, Kevin; McNulty, Steven; Flaker, Greg; Tonkin, Andrew; Smith, Warren; Toff, William; Dorian, Paul; Clapp-Channing, Nancy; Anderson, Jill J; Johnson, George G; Schron, Eleanor B EB; Poole, Jeanne E JE; Lee, Kerry L KL; Bardy, Gust H GH;
Quality of life effects of automatic external defibrillators in the home: results from the Home Automatic External Defibrillator Trial (HAT).

Marsch, Stephan C U; Müller, Christian; Marquardt, Katja; Conrad, Gerson; Tschan, Franziska; Hunziker, Patrick R;
Human factors affect the quality of cardiopulmonary resuscitation in simulated cardiac arrests.

Martin, Philip; Kemp, Alison; Theobald, Peter; Maguire, Sabine; Jones, Michael;
Does a more "physiological" infant manikin design effect chest compression quality and create a potential for thoracic over-compression during simulated infant CPR?
Martín-Castro, C; Bravo, M; Navarro-Pérez, P; Mellado Vergel, F J;
[Survival and the quality of life in extrahospital cardiorespiratory arrest].
Med Clin (Barc) 1999; 113(4): 121-3

McInnes, Andrew D; Sutton, Robert M; Nishisaki, Akira; Niles, Dana; Leffelman, Jessica; Boyle, Lori; Maltese, Matthew R; Berg, Robert A; Nadkarni, Vinay M;
Ability of code leaders to recall CPR quality errors during the resuscitation of older children and adolescents.
Resuscitation 2012; 83(12): 1462-6

Mickelsen, Steven; McNeil, Rebecca; Parikh, Pragnesh; Persoff, Jason;
Reduced resident "code blue" experience in the era of quality improvement: new challenges in physician training.
Acad Med 2011; 86(6): 726-30

Middelkamp, Wietske; Moulaert, Veronique Rmp; Verbunt, Jeanine A; van Heugten, Caroline M; Bakx, Wilbert G; Wade, Derick T;
Life after survival: long-term daily life functioning and quality of life of patients with hypoxic brain injury as a result of a cardiac arrest.
Clin Rehabil 2007; 21(5): 425-31

Miranda, D R;
Quality of life after cardiopulmonary resuscitation.
Morley, Peter T;
Monitoring the quality of cardiopulmonary resuscitation.

Curr Opin Crit Care 2007; 13(3): 261-7

Mortensen, Rasmus B; Høyer, Christian B; Pedersen, Mathias K; Brindley, Peter G; Nielsen, Jens C;
Comparison of the quality of chest compressions on a dressed versus an undressed manikin: A controlled, randomised, cross-over simulation study.

Scand J Trauma Resusc Emerg Med 2010; 18: 16

Moser, W; Bohm, V; Bohmer, K; Engelbrecht, R; Brenner, H H;
Integrated development of a knowledge-based CPR system for quality assurance in diabetes outpatient clinics.

Medinfo 1995; 8 Pt 1: 236-9

Motzer, S U; Stewart, B J;
Sense of coherence as a predictor of quality of life in persons with coronary heart disease surviving cardiac arrest.

Moulaert, Véronique R M P; Wachelder, Esther M; Verbunt, Jeanine A; Wade, Derick T; van Heugten, Caroline M;
Determinants of quality of life in survivors of cardiac arrest.
Namerow, P B; Firth, B R; Heywood, G M; Windle, J R; Parides, M K;
Quality-of-life six months after CABG surgery in patients randomized to ICD versus no ICD therapy: findings from the CABG Patch Trial.

Pacing Clin Electrophysiol 1999; 22(9): 1305-13

Neumann, Tobias; Gruenewald, Matthias; Lauenstein, Christoph; Drews, Tobias; Iden, Timo; Meybohm, Patrick;
Hands-on defibrillation has the potential to improve the quality of cardiopulmonary resuscitation and is safe for rescuers-a preclinical study.

J Am Heart Assoc 2012; 1(5): e001313

Nichol, Graham; Rumsfeld, John; Eigel, Brian; Abella, Benjamin S; Labarthe, Darwin; Hong, Yuling; O'Connor, Robert E; Mosesso, Vincent N; Berg, Robert A; Leeper, Barbara Bobbi; Weisfeldt, Myron L; ; ; ; ; ; ;
Essential features of designating out-of-hospital cardiac arrest as a reportable event: a scientific statement from the American Heart Association Emergency Cardiovascular Care Committee; Council on Cardiopulmonary, Perioperative, and Critical Care; Council on Cardiovascular Nursing; Council on Clinical Cardiology; and Quality of Care and Outcomes Research Interdisciplinary Working Group.

Circulation 2008; 117(17): 2299-308

Nichol, G; Stiell, I G; Hebert, P; Wells, G A; Vandemheen, K; Laupacis, A;
What is the quality of life for survivors of cardiac arrest? A prospective study.

Acad Emerg Med 1999; 6(2): 95-102
Niles, Dana E; Maltese, Matthew R; Nishisaki, Akira; Seacrist, Thomas; Leffelman, Jessica; Hutchins, Larissa; Schneck, Nancy; Sutton, Robert M; Arbogast, Kristy B; Berg, Robert A; Nadkarni, Vinay M;

Forensic analysis of crib mattress properties on pediatric CPR quality-Can we balance pressure reduction with CPR effectiveness?

Resuscitation 2013; :

PubMed ID 23395793

Nishisaki, Akira; Nysaether, Jon; Sutton, Robert; Maltese, Matthew; Niles, Dana; Donoghue, Aaron; Bishnoi, Ram; Helfaer, Mark; Perkins, Gavin D; Berg, Robert; Arbogast, Kristy; Nadkarni, Vinay;

Effect of mattress deflection on CPR quality assessment for older children and adolescents.

PubMed ID 19342150

Noordergraaf, Gerrit; Drinkwaard, Bianca; van Berkom, Paul; van Hemert, Hans; Venema, Alyssa; Scheffer, Gert; Noordergraaf, Abraham;

The quality of chest compressions by trained personnel: the effect of feedback, via the CPREzy, in a randomized controlled trial using a manikin model.

Resuscitation 2006; 69(2): 241-52

PubMed ID 16457935

Ochoa, F J; Ramalle-Gómara, E; Lisa, V; Saralegui, I;

The effect of rescuer fatigue on the quality of chest compressions.

Resuscitation 1998; 37(3): 149-52

PubMed ID 9715774

Odegaard, Silje; Saether, Elisabeth; Steen, Petter; Wik, Lars;

Quality of lay person CPR performance with compression: ventilation ratios 15:2, 30:2 or continuous chest compressions without ventilations on manikins.
Oh, Jaehoon; Kang, Hyunggoo; Chee, Youngjoon; Lim, Taeho; Song, Yeongtak; Cho, Youngsuk; Je, Sangmo;
Use of backboard and deflation improve quality of chest compression when cardiopulmonary resuscitation is performed on a typical air inflated mattress configuration.

Olasveengen, Theresa M; Vik, Eystein; Kuzovlev, Artem; Sunde, Kjetil;
Effect of implementation of new resuscitation guidelines on quality of cardiopulmonary resuscitation and survival.

Resuscitation 2009; 80(4): 407-11

Olasveengen, Theresa M; Lund-Kordahl, Inger; Steen, Petter A; Sunde, Kjetil;
Out-of hospital advanced life support with or without a physician: effects on quality of CPR and outcome.

Resuscitation 2009; 80(11): 1248-52

Olasveengen, Theresa M; Wik, Lars; Steen, Petter A;
Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest.

Resuscitation 2008; 76(2): 185-90

Olasveengen, Theresa; Tomlinson, Ann-Elin; Wik, Lars; Sunde, Kjetil; Steen, Petter; Myklebust, Helge; Kramer-Johansen, Jo;
A failed attempt to improve quality of out-of-hospital CPR through performance evaluation.
Ong, E;
Improving the quality of CPR in the community.

Singapore Med J 2011; 52(8): 586-91

Ornato, J; Gonzalez, E; Garner, A; Levine, R; McClung, B;
Effect of cardiopulmonary resuscitation compression rate on end-tidal carbon dioxide concentration and arterial pressure in man.

Crit. Care Med. 1988; 16(3): 241-5

Parnell, Melinda M; Larsen, Peter D;
Poor quality teaching in lay person CPR courses.

Resuscitation 2007; 73(2): 271-8

Passman, Rod; Subacius, Haris; Ruo, Bernice; Schaechter, Andi; Howard, Adam; Sears, Sam F; Kadish, Alan;
Implantable cardioverter defibrillators and quality of life: results from the defibrillators in nonischemic cardiomyopathy treatment evaluation study.

Arch. Intern. Med. 2007; 167(20): 2226-32

Pearlman, R A; Uhlmann, R F; Jecker, N S;
Spousal understanding of patient quality of life: implications for surrogate decisions.
Peberdy, Mary; Silver, Annemarie; Ornato, Joseph;

Effect of caregiver gender, age, and feedback prompts on chest compression rate and depth.

Resuscitation 2009; 80(10): 1169-74

Peberdy, Mary Ann; Cretikos, Michelle; Abella, Benjamin S; DeVita, Michael; Goldhill, David; Kloek, Walter; Kronick, Steven L; Morrison, Laurie J; Nadkarni, Vinay M; Nichol, Graham; Nolan, Jerry P; Parr, Michael; Tibballs, James; van der Jagt, Elise W; Young, Lis;

Recommended guidelines for monitoring, reporting, and conducting research on medical emergency team, outreach, and rapid response systems: an Utstein-style scientific statement. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research.

Resuscitation 2007; 75(3): 412-33

Peberdy, Mary Ann; Cretikos, Michelle; Abella, Benjamin S; DeVita, Michael; Goldhill, David; Kloek, Walter; Kronick, Steven L; Morrison, Laurie J; Nadkarni, Vinay M; Nichol, Graham; Nolan, Jerry P; Parr, Michael; Tibballs, James; van der Jagt, Elise W; Young, Lis;

Recommended guidelines for monitoring, reporting, and conducting research on medical emergency team, outreach, and rapid response systems: an Utstein-style scientific statement: a scientific statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian Resuscitation Council, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, and the New Zealand Resuscitation Council); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiopulmonary, Perioperative, and Critical Care; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research.

Circulation 2007; 116(21): 2481-500

Peberdy, Mary Ann; Cretikos, Michelle; Abella, Benjamin S; DeVita, Michael; Goldhill, David; Kloek, Walter; Kronick, Steven L; Morrison, Laurie J; Nadkarni, Vinay M; Nichol, Graham; Nolan, Jerry P; Parr, Michael; Tibballs, James; van der Jagt, Elise W; Young, Lis;
Perkins, Gavin D; Boyle, William; Bridgestock, Hannah; Davies, Sarah; Oliver, Zoe; Bradburn, Sandra; Green, Clare; Davies, Robin P; Cooke, Matthew W;

Quality of CPR during advanced resuscitation training.

Resuscitation 2008; 77(1): 69-74

Perkins, Gavin D; Benny, Robert; Giles, Simon; Gao, Fang; Tweed, Michael J;

Do different mattresses affect the quality of cardiopulmonary resuscitation?

Polo, V; Ardeleani, G; Pistone, G; Baltrocchi, M; Mongiat, R; Porro, A; Macchi, C;

[3-year-survival and quality of life after out-of-hospital heart arrest].

Pozner, Charles N; Almozlino, Adam; Elmer, Jonathan; Poole, Stephen; McNamara, De'Ann; Barash, David;

Cardiopulmonary resuscitation feedback improves the quality of chest compression provided by hospital health care professionals.

Pytte, Morten; Kramer-Johansen, Jo; Eilevstjønn, Joar; Eriksen, Morten; Strømme, Taevje; Godang, Kristin; Wik, Lars; Steen, Petter; Sunde, Kjetil;

Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs.

Resuscitation 2006; 71(3): 369-78
Quality of life and prognosis among survivors of out-of-hospital cardiac arrest.

Curr Opin Crit Care 2004; 10(3): 218-23

The quality of cardiopulmonary resuscitation using supraglottic airways and intraosseous devices: a simulation trial.

Resuscitation 2013; 84(1): 93-7

Quality of life in long term conscious cardiac arrest survivors and related impact on the social support network.

Minerva Anestesiol 1994; 60(10): 567-70

The quality of chest compressions during cardiopulmonary resuscitation overrides importance of timing of defibrillation.

Chest 2007; 132(1): 70-5

Quality of BLS decreases with increasing resuscitation complexity.

Resuscitation 2006; 68(3): 365-9
Roessler, Bernhard; Fleischhackl, Roman; Losert, Heidrun; Wandaller, Cosima; Arrich, Jasmin; Mittlboeck, Martina; Domanovits, Hans; Hoerauf, Kaus;

Cardiopulmonary resuscitation and the 2005 universal algorithm: has the quality of CPR improved?

Roewer, N; Klöss, T; Püschel, K;

[Long-term result and quality of life following preclinical cardiopulmonary resuscitation].

Anasth Intensivther Notfallmed 1985; 20(5): 244-50

Rössler, B; Ziegler, M; Hüpf, M; Fleischhackl, R; Krychtiuk, K A; Schebesta, K;

Can a flowchart improve the quality of bystander cardiopulmonary resuscitation?

Resuscitation 2013; :

Rubin, Mike;

Saving accounts. 'Saves' are about more than ROSC--like maintaining quality of life.

EMS Mag 2010; 39(6): 66

Saner, Hugo; Borner Rodriguez, Esther; Kummer-Bangerter, Andrea; Schüppel, Reinhart; von Planta, Martin;

Quality of life in long-term survivors of out-of-hospital cardiac arrest.

Schneider, T; Mauer, D; Diehl, P; Eberle, B; Dick, W;
Does standardized mega-code training improve the quality of pre-hospital advanced cardiac life support (ACLS)?
Resuscitation 1995; 29(2): 129-34

Schneider, T; Mauer, D; Diehl, P; Eberle, B; Dick, W;
Quality of on-site performance in prehospital advanced cardiac life support (ACLS).

Semeraro, Federico; Frisoli, Antonio; Loconsole, Claudio; Bannò, Filippo; Tammaro, Gaetano; Imbriaco, Guglielmo; Marchetti, Luca; Cerchiari, Erga L;
Motion detection technology as a tool for cardiopulmonary resuscitation (CPR) quality training: A randomised crossover mannequin pilot study.
Resuscitation 2013; 84(4): 501-7

Semeraro, Federico; Taggi, Floriana; Tammaro, Gaetano; Imbriaco, Guglielmo; Marchetti, Luca; Cerchiari, Erga L;
iCPR: a new application of high-quality cardiopulmonary resuscitation training.
Resuscitation 2011; 82(4): 436-41

Shea, Julie B;
Quality of life issues in patients with implantable cardioverter defibrillators: driving, occupation, and recreation.
<table>
<thead>
<tr>
<th>PubMed ID</th>
<th>Read Abstract</th>
<th>Read Full Text</th>
<th>Article Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>15475819</td>
<td></td>
<td></td>
<td>PubMed</td>
</tr>
<tr>
<td>19618137</td>
<td></td>
<td></td>
<td>PubMed</td>
</tr>
<tr>
<td>9051818</td>
<td></td>
<td></td>
<td>PubMed</td>
</tr>
<tr>
<td>21478746</td>
<td></td>
<td></td>
<td>PubMed</td>
</tr>
<tr>
<td>22208179</td>
<td></td>
<td></td>
<td>PubMed</td>
</tr>
</tbody>
</table>

Siebig, Sylvia; Reng, Michael; Gantner, Martin; Langgartner, Julia;
[Quality management: implementation of the "in-hospital" emergency protocol into clinical routine].

Skogvoll, E; Wik, L;
Active compression-decompression cardiopulmonary resuscitation (ACD-CPR) compared with standard CPR in a manikin model--decompression force, compression rate, depth and duration.

Resuscitation 1997; 34(1): 6-Nov

Soar, Jasmeet; Edelson, Dana P; Perkins, Gavin D;
Delivering high-quality cardiopulmonary resuscitation in-hospital.

Curr Opin Crit Care 2011; 17(3): 225-30

Song, Fengqing; Sun, Shijie; Ristagno, Giuseppe; Yu, Tao; Shan, Yi; Chung, Sung Phil; Weil, Max Harry; Tang, Wanchun;
Delayed high-quality CPR does not improve outcomes.

Resuscitation 2011; 82 Suppl 2: S52-5

Steen, Petter Andreas; Kramer-Johansen, Jo;
Improving cardiopulmonary resuscitation quality to ensure survival.

Curr Opin Crit Care 2008; 14(3): 299-304
Stiell, Ian; Nichol, Graham; Wells, George; De Maio, Valerie; Nesbitt, Lisa; Blackburn, Josée; Spaite, Daniel;
Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation.

Circulation 2003; 108(16): 1939-44

Sullivan, M J; Guyatt, G H;
Simulated cardiac arrests for monitoring quality of in-hospital resuscitation.

Lancet 1986; 2(8507): 618-20

Sunde, K; Eftestøl, T; Askenberg, C; Steen, P A;
Quality assessment of defibrillation and advanced life support using data from the medical control module of the defibrillator.

Sunde, K; Wik, L; Steen, P;
Quality of mechanical, manual standard and active compression-decompression CPR on the arrest site and during transport in a manikin model.

Resuscitation 1997; 34(3): 235-42

Sutton, Robert M; Nadkarni, Vinay; Abella, Benjamin S;
"Putting it all together" to improve resuscitation quality.

Sutton, Robert M; Niles, Dana; Nysaether, Jon; Arbogast, Kristy B; Nishisaki, Akira; Maltese, Matthew R; Bishnoi, Ram; Helfaer, Mark A; Nadkarni, Vinay; Donoghue, Aaron;

Pediatric CPR quality monitoring: analysis of thoracic anthropometric data.

Resuscitation 2009; 80(10): 1137-41

Swart, G L; Mateer, J R; DeBehnke, D J; Jameson, S J; Osborn, J L;
The effect of compression duration on hemodynamics during mechanical high-impulse CPR.

Acad Emerg Med ; 1(5): 430-7

Tanaka, Yoshio; Taniguchi, Junro; Wato, Yukihiro; Yoshida, Yutaka; Inaba, Hideo;
The continuous quality improvement project for telephone-assisted instruction of cardiopulmonary resuscitation increased the incidence of bystander CPR and improved the outcomes of out-of-hospital cardiac arrests.

Resuscitation 2012; 83(10): 1235-41

Tømte, Øystein; Sjaastad, Ivar; Wik, Lars; Kuzovlev, Artem; Eriksen, Morten; Norseng, Per; Sunde, Kjetil;

Discriminating the effect of accelerated compression from accelerated decompression during high-impulse CPR in a porcine model of cardiac arrest.

Resuscitation 2010; 81(4): 488-92

Torgersen, J; Strand, K; Bjelland, T W; Klepstad, P; Kvåle, R; Søreide, E; Wentzel-Larsen, T; Flaatten, H;

Cognitive dysfunction and health-related quality of life after a cardiac arrest and therapeutic hypothermia.
Tränkler, Uwe; Hagen, Oddvar; Horsch, Alexander; Video quality of 3G videophones for telephone cardiopulmonary resuscitation.

Trowbridge, Cynthia; Parekh, Jesal N; Ricard, Mark D; Potts, Jerald; Patrickson, W Clive; Cason, Carolyn L; A randomized cross-over study of the quality of cardiopulmonary resuscitation among females performing 30:2 and hands-only cardiopulmonary resuscitation.

Tucker, K; Khan, J; Idris, A; Savitt, M; The biphasic mechanism of blood flow during cardiopulmonary resuscitation: a physiologic comparison of active compression-decompression and high-impulse manual external cardiac massage.

Turner, I; Turner, S; Armstrong, V; Does the compression to ventilation ratio affect the quality of CPR: a simulation study.
Comparison of dynamic MRI at 3.0 T and MDCT of pancreatobiliary disease: evaluation with source, MPR, CPR, and MIP images for image quality and hepatic arterial and portal venous vessel conspicuity.

PubMed ID 19306408 Read Abstract Read Full Text Article Source PubMed

Vaillancourt, Christian; Midzic, Ines; Taljaard, Monica; Chisamore, Brian;

Performer fatigue and CPR quality comparing 30:2 to 15:2 compression to ventilation ratios in older bystanders: A randomized crossover trial.

Resuscitation 2011; 82(1): 51-6

PubMed ID 20947241 Read Abstract Read Full Text Article Source PubMed

van Alem, Anouk P; Waalewijn, Reinier A; Koster, Rudolph W; de Vos, Rien;

Assessment of quality of life and cognitive function after out-of-hospital cardiac arrest with successful resuscitation.

Am. J. Cardiol. 2004; 93(2): 131-5

PubMed ID 14715335 Read Abstract Read Full Text Article Source PubMed

Van Hoeyweghen, R J; Bossaert, L L; Mullie, A; Calle, P; Martens, P; Buylaert, W A; Delooz, H;

Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group.

Resuscitation 1993; 26(1): 47-52

PubMed ID 8210731 Read Abstract Read Full Text Article Source PubMed

van Mil, A H; van Klink, R C; Huntjens, C; Westendorp, R G; Stiggelbout, A M; Meinders, A E; Lagaay, A M;

Cardiopulmonary resuscitation preferences in Dutch community-dwelling and hospitalized elderly people: an interaction between gender and quality of life.

Med Decis Making ; 20(4): 423-9

PubMed ID 11059475 Read Abstract Read Full Text Article Source PubMed
van Olden, Ger D J; Meeuwis, J Dik; Bolhuis, Hugo W; Boxma, Han; Goris, R Jan A;
Advanced trauma life support study: quality of diagnostic and therapeutic procedures.

J Trauma 2004; 57(2): 381-4

PubMed ID 15345989

Van Voorhis, Kerry T; Willis, Tina Schade;
Implementing a pediatric rapid response system to improve quality and patient safety.

PubMed ID 19660635

Verplancke, T; De Paepe, P; Calle, P A; De Regge, M; Van Maele, G; Monsieurs, K G;
Determinants of the quality of basic life support by hospital nurses.

Resuscitation 2008; 77(1): 75-80

PubMed ID 18083286

Vivier, Scott;
The quest for high-quality CPR. A team-based approach & feedback help the Henderson (Nev.) Fire Department improve CPR effectiveness.

JEMS 2010; 35(9): suppl 3-5

PubMed ID 21513030

Wachelder, E M; Moulaert, V R M P; van Heugten, C; Verbunt, J A; Bekkers, S C A M; Wade, D T;
Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest.

Resuscitation 2009; 80(5): 517-22

PubMed ID 19282084
Wayne, Diane B; Didwania, Aashish; Feinglass, Joe; Fudala, Monica J; Barsuk, Jeffrey H; McGaghie, William C;
Simulation-based education improves quality of care during cardiac arrest team responses at an academic teaching hospital: a case-control study.
Chest 2008; 133(1): 56-61
PubMed ID 17573509 Read Abstract Read Full Text Article Source PubMed

Weingarten, M; Andrew, W F;
The CPR: balancing quality and cost.
Healthc Inform 1996; 13(8): 44, 46, 48
PubMed ID 10159902 Read Abstract Read Full Text Article Source PubMed

Wijdicks, E F M; Hijdra, A; Young, G B; Bassetti, C L; Wiebe, S; ;
Neurology 2006; 67(2): 203-10
PubMed ID 16864809 Read Abstract Read Full Text Article Source PubMed

Wik, L; Steen, P A;
The ventilation/compression ratio influences the effectiveness of two rescuer advanced cardiac life support on a manikin.
Resuscitation 1996; 31(2): 113-9
PubMed ID 8733017 Read Abstract Read Full Text Article Source PubMed

Wik, L; Steen, P A; Bircher, N G;
Quality of bystander cardiopulmonary resuscitation influences outcome after prehospital cardiac arrest.
Resuscitation 1994; 28(3): 195-203
PubMed ID 7740189 Read Abstract Read Full Text Article Source PubMed
Willan, Andrew R; Chen, Eric Bingshu; Cook, Richard J; Lin, D Y;
Incremental net benefit in randomized clinical trials with quality-adjusted survival.
PubMed ID 12529868

Wu, Jun-yuan; Li, Chun-sheng;
[The impact of quality of cardiopulmonary resuscitation on post-resuscitation inflammatory reaction in a porcine cardiac arrest model].
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2008; 20(8): 469-71
PubMed ID 18687173

Yang, Chih-Wei; Wang, Hui-Chih; Chiang, Wen-Chu; Hsu, Che-Wei; Chang, Wei-Tien; Yen, Zui-Shen; Ko, Patrick; Ma, Matthew; Chen, Shyr-Chyr; Chang, Shan-Chwen SC;
Interactive video instruction improves the quality of dispatcher-assisted chest compression-only cardiopulmonary resuscitation in simulated cardiac arrests.
PubMed ID 19114904

Yang, Chih-Wei; Wang, Hui-Chih; Chiang, Wen-Chu; Chang, Wei-Tien; Yen, Zui-Shen; Chen, Shey-Ying; Ko, Patrick; Ma, Matthew; Chen, Shyr-Chyr; Chang, Shan-Chwen SC; Lin, Fang-Yue FY;
Impact of adding video communication to dispatch instructions on the quality of rescue breathing in simulated cardiac arrests--a randomized controlled study.
Resuscitation 2008; 78(3): 327-32
PubMed ID 18583016

Yeung, Joyce H Y; Ong, G J; Davies, Robin P; Gao, Fang; Perkins, Gavin D;
Factors affecting team leadership skills and their relationship with quality of cardiopulmonary resuscitation.
Yoshida, H; Matuura, H; Ohta, S; Takigami, K; Yasuda, K; [The internal thoracic artery of poor quality: was cardiac massage a cause of ITA stenosis?].

Zhan, Lei; He, Qing; Zhou, Ya-xiong; [The effect of different methods of counting of rescue crew on the quality of cardiopulmonary resuscitation].

Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2010; 22(2): 76-8

Zhang, Hehua; Yang, Zhengfei; Huang, Zitong; Chen, Bihua; Zhang, Lei; Li, Heng; Wu, Baoming; Yu, Tao; Li, Yongqin; Transthoracic impedance for the monitoring of quality of manual chest compression during cardiopulmonary resuscitation.

Resuscitation 2012; 83(10): 1281-6